Synthesis and characterization of core-shell Fe3O4-gold-chitosan nanostructure

نویسندگان

  • Hossein Salehizadeh
  • Elham Hekmatian
  • Meisam Sadeghi
  • Kevin Kennedy
چکیده

BACKGROUND Fe₃O₄-gold-chitosan core-shell nanostructure can be used in biotechnological and biomedical applications such as magnetic bioseparation, water and wastewater treatment, biodetection and bioimaging, drug delivery, and cancer treatment. RESULTS Magnetite nanoparticles with an average size of 9.8 nm in diameter were synthesized using the chemical co-precipitation method. A gold-coated Fe₃O₄ monotonous core-shell nanostructure was produced with an average size of 15 nm in diameter by glucose reduction of Au³⁺ which is then stabilized with a chitosan cross linked by formaldehyde. The results of analyses with X-ray diffraction (XRD), Fourier Transformed Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), and Atomic Force Microscopy (AFM) indicated that the nanoparticles were regularly shaped, and agglomerate-free, with a narrow size distribution. CONCLUSIONS A rapid, mild method for synthesizing Fe₃O₄-gold nanoparticles using chitosan was investigated. A magnetic core-shell-chitosan nanocomposite, including both the supermagnetic properties of iron oxide and the optical characteristics of colloidal gold nanoparticles, was synthesized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications

Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...

متن کامل

Chitosan Functionalized Fe3O4@Au Core-Shell Nanomaterials for Targeted Drug Delivery

Chitosan functionalized Fe3O4-Au core shell nanoparticles have been prepared using a two-step wet chemical approach using NaBH4 as reducing agent for formation of Au in ethylene glycol. X-ray diffraction studies shows individual phases of Fe3O4 and Au in the as prepared samples with crystallite size of 5.9 and 11.4 nm respectively. The functionalization of the core-shell nanostructure with Chit...

متن کامل

Synthesis and characterization of Fe3O4@Ag core-shell: structural, morphological, and magnetic properties

This paper is a report on the synthesis of the Fe3O4@Ag core-shell with high saturation magnetization of magnetite nanoparticles as the core, by using polyol route and silver shell by chemical reduction. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy analyses confirmed that the particles so produced were monophase. The magnetic properties of the product were investigated by...

متن کامل

Synthesis of Three-Layered Magnetic Based Nanostructure for Clinical Application

The main objective of this research was to synthesize and characterize gold-coated Fe3O4 /SiO2 nanoshells for clinical applications. Magnetite nanoparticles (NPs) were prepared via co-precipitation. The results showed that smaller particles can be synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm by using 0.9 M of NaOH at 750 rpm. The NPs were then m...

متن کامل

Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications

The unique properties and applications of iron oxide and Au nanoparticles have motivated researchers to synthesize and optimize a combined nanocomposite containing both. By using various polymers such as chitosan, some of the problems of classic core-shell structures (such as reduced saturation magnetization and thick coating) have been overcome. In the present study, chitosan and one of its we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2012